MANAGEMENT OF Fusarium oxysporum f. sp. lycopersici, THE CAUSAL AGENT OF WILT OF TOMATO

MEENA, R. L.; *TETARWAL, M. L. AND MAHESHWARI, K.

DEPARTMENT OF PLANT PATHOLOGY SARDARKRUSHINAGAR DANTIWADA AGRICULTURAL UNIVERSITY SARDARKRUSHINAGAR-385 506, GUJARAT, INDIA

*EMAIL: mohantetarwal@gmail.com

ABSTRACT

All the systemic and compound fungicides tested caused significant reduction in mycelia growth of Fusarium oxysporum f. sp. lycopersici. Carbendazim proved most effective in reducing mycelia growth followed by propiconazole and in compound fungicides, carbendazim (12 %) + mancozeb (63 %) WP followed by azoxystrobin (11 %) + tebuconazole (18.3 %) were found effective. Trichoderma viride performed best in inhibiting the mycelial growth under in vitro followed by Trichoderma harzianum and Trichoderma virens. The fungal antagonists revealed higher antagonism as compared to bacterial bioagents in growth inhibition of Fusarium oxysporum f. sp. lycopersici.

KEY WORDS: Bio-control agents, Fungicides, Fusarium oxysporum f. sp. Lycopersici, Management, Tomato

INTRODUCTION

Tomato crop occupies a very important place among all the vegetable crops grown in India; the average yield of this crop on farmers' fields is poor in comparison to the other countries. One of the main constraints for poor in yield is the biotic and abiotic stress. Among biotics stress, a large number of disease incited by fungi, bacteria, viruses and nematodes affect to attain the optimum yield. Among them, Fusarium wilt is the most serious one causing great damage to the crop. Present study was undertaken to evaluate some fungicides and bio-agents against Fusarium oxysporum f. sp. lycopersici the causal agent of tomato wilt under in vitro.

MATERIALS AND METHODS

The study was conducted in 2017-18 to test the effect of systemic fungicides, compound fungicides and bio-agents against

mycelia growth of fungus using poisoned food technique. Required quantities of systemic fungicides (Carbendazim 50 WP, Difenoconazolec 25 EC, Propiconazole 25 EC, Azoxystrobin 23 SC, Tebuconazole 25.9 EC). compound fungicides (Carbendazim 12 % WP + Mancozeb 63 % WP, Metalaxyl 8 % WP + Mancozeb 64 % WP, Carboxin 37.5 % WP + Thiram 37.5 % WP, Azoxystrobin 11 % SC + Tebuconazole 18.3 % SC) and bio-agents (Trichoderma viride. Trichoderma harzianum, Trichoderma **Pseudomonas** virens, fluorescens and Bacillus subtilis). All fungicides were mixed separately in melted P.D.A. medium in conical flask to get 50, 100, 250, 500 ppm concentrations, respectively. Medium amended fungicides was poured in sterilized petri dishes and allowed to solidify for 12 hrs. Each plate was then, inoculated with 5 mm

www.arkgroup.co.in **Page 281**

disc of mycelia bit taken from 7 days old culture of Fusarium oxysporum f. sp. Lycopersici growing on PDA. Inoculated petri dishes were incubated at 27 ± 1°C. Colony diameter was measured after 7 days incubation. Proper controls maintained and per cent growth inhibition was calculated. Efficacy of bio-agents was tested by dual culture technique. The bioagents and pathogen was grown separately on PDA medium. From seven days old culture 5 mm mycelial disc of the test pathogen were cut aseptically and placed opposite to each other approximately 60 mm apart on to petri plate containing 20 ml PDA. While in bacterial antagonists, the bacterial antagonist was streaked at one end of each petri plate poured aseptically with 20 ml PDA medium 24 hours prior to the pathogen inoculation. The plates with only pathogen were served as control. The plates were inoculated $25 \pm 2^{\circ}$ C and after 7 days, the radial growth was measured. The studies were conducted using Completely Randomized Design (CRD).

RESULT AND DISCUSSION

Result showed that all the five systemic fungicides, compound fungicides ant bio-control agents caused significant reduction in mycelia growth. Among fungicides, the maximum growth inhibition recorded carbendazim was in propiconazole at all five concentrations over rest of the systemic fungicides tested. The most effective were carbendazim at different concentrations at 50 ppm (90.59 %), 100 ppm (91.76 %), 250 ppm (92.55 %), 500 ppm (92.75 %) and 750 ppm (93.53 %) and propiconazole at 50 ppm (85.88 %), 100 ppm (88.24 %), 250 ppm (90.20 %), 500 ppm (91.37 %) and 750 ppm (92.55 %) (Table 1). Azoxystrobin 23 SC showed the lowest growth inhibition at all different concentrations. Among different compound fungicides tested, carbendazim 12 per cent WP + mancozeb 63 per cent WP at all the

five concentrations viz., 50 ppm (89.80 %), 100 ppm (91.57 %), 250 ppm (92.75 %), 500 ppm (93.92 %) and 750 ppm (95.10 %) followed by azoxystrobin 11 per cent SC + tebuconazole18.3 per cent SC at 50 ppm (86.86 %), 100 ppm (89.22 %), 250 ppm (90.20 %), 500 ppm (91.57 %) and 750 ppm (92.75 %) inhibited significantly the growth of mycelia (Table 2). Song et al. (2004) found carbendazim as most effective fungicides in controlling the mycelial growth of Fusarium oxysporum f. sp. lycopersici. Raheja and Patel (2011) reported that complete inhibition growth of Fusarium oxysporum f. sp. cumini with carbendazim and combination fungicide carbendazim + mancozeb at 50 ppm concentration in in vitro condition.

Trichoderma viride observed the best bio-agent in inhibiting the pathogen growth (69.80 %) in in vitro followed by T. harzianum (65.29 %) and T. virens (52.16 %). Pseudomonas fluorescens had avarage impact on growth inhibition (46.67 %) of wilt pathogen (Table 3). Overall, all the three species of Trichoderma revealed higher antagonism as compared to bacterial bio-agents against Fusarium oxysporum f. sp. lycopersici. Similar observations were recorded on the inhibition of Fusarium oxysporum f. sp. Lycopersici by Bell et al. (1982) and Gurjar et al. (2004) found inhibition of Fusarium oxysporum f. sp. vasinfectum by T. harzianum and T. viride. Rajan et al. (2013) found significant inhibition of Fusarium oxysporum f. sp. ciceri by Trichoderma viride followed by Trichoderma harzianum. Barhate et al. (2015) reported that T. viride recorded the highest growth inhibition of Fusarium oxysporum f. sp. lycopersici followed by T. harzianum, T. hamatum and T. koningii.

CONCLUSION

Carbendazim proved most effective in reducing mycelia growth followed by propiconazole and in compound fungicides,

carbendazim (12 %) + mancozeb (63 %) WP followed by azoxystrobin (11 %) + tebuconazole (18.3 %) were found effective. Trichoderma viride performed best in inhibiting the mycelial growth under in vitro followed by Trichoderma harzianum and Trichoderma virens.

REFERENCES

- Barhate, B. G.; Musmade, N. A. and Nikhate, T. A. (2015). Management of Fusarium wilt of tomato by bioagents, fungicides and varietal resistance. Int. J. Plant Prot., 8(1): 49-52.
- Bell, D. K.; Well, H. D. and Markham, C.R. (1982). In vitro antagonism of Trichoderma species against six fungal plant pathogens. Phytopatho., **72**: 379-382.
- Gurjar, K.L.; Singh, S. D. and Raval, P. (2004). Management of seed borne

- pathogen of okra with bio-agents. *Plant Dis. Res.*, **19** (1): 44-46.
- and Patel, R.L. (2011). Raheja, Evaluation of different fungicides as seed dressers against cumin wilt disease caused by **Fusarium** oxysporum f. sp. cumini. Plant Dis. Res., 26 (1): 20-25.
- Rajan, P. V.; Saifulla, M. and Pallavi, M.S. (2013). In vitro evaluation of bioagents, fungicides and herbicides against Fusarium oxysporum f. sp. ciceris causing wilt of chickpea. Bioinfolet. 10 (2a): 403-405.
- Song, W.; Zhou, L.; Yang, C.; Cao, X.; Zhang, L. and Liu, X. (2004). Tomato Fusarium wilt and its chemical control strategies in a hydroponic system. Crop Prot., **23**(3): 243-247.

www.arkgroup.co.in **Page 283**

Table 1: Effect of systemic fungicides on growth inhibition of $Fusarium\ oxysporum\ in\ vitro\ condition$

C	Fungicides	Growth Inhibition (%)					
Sr. No.		Concentrations (ppm)					
		50	100	250	500	750	Mean
1	Carbendazim 50 WP	72.22	73.43	74.26	74.51	75.42	73.97
		(90.59)*	(91.76)	(92.55)	(92.75)	(93.53)	(92.33)
2	Difenoconazole 25 EC	59.30	60.74	63.32	64.03	64.90	62.46
<i>_</i>		(73.92)	(76.08)	(79.80)	(80.78)	(81.96)	(78.50)
3	Propiconazole 25 EC	67.97	70.00	71.81	72.99	74.79	71.51
		(85.88)	(88.24)	(90.20)	(91.37)	(92.55)	(89.65)
4	Azoxystrobin 23 SC	47.36	48.49	49.17	49.28	49.85	48.83
4		(54.12)	(56.08)	(57.25)	(57.45)	(58.43)	(56.67)
5	Tebuconazole 25. 9 EC	64.46	66.69	68.15	70.70	71.81	68.36
3		(81.37)	(84.31)	(86.08)	(89.02)	(90.20)	(86.17)
	Moor		63.87	65.34	66.30	67.35	
Mean		(77.17)	(79.29)	(81.17)	(82.27)	(83.33)	
		Fungicide (F)		Concentration		F × C	
				(C)			
S.Em.±		0.28		0.28		0.63	
C. D. at 5 %		0.80		0.80		1.79	
	C.V. %	1.70					

^{*}Figures in parenthesis are retransformed values

www.arkgroup.co.in Page 284

Table 2: Effect of compound fungicides on growth inhibition of Fusarium oxysporum in vitro condition

Sr. No.	Fungicides	Growth Inhibition (%)						
		Concentrations (ppm)						
		50	100	250	500	750	Mean	
1	Carbendazim 12% WP + Mancozeb 63% WP	71.42 (89.80)*	73.18 (91.57)	74.45 (92.75)	75.82 (93.92)	77.35 (95.10)	74.44 (92.63)	
2	Metalaxyl 8% WP + Mancozeb 64% WP	34.66 (32.35)	36.91 (36.08)	38.99 (39.61)	43.69 (47.25)	51.11 (60.59)	41.07 (43.17)	
3	Carboxin 37.5% WP + Thiram 37.5% WP	45.11 (50.20)	51.23 (60.78)	59.81 (74.71)	70.76 (88.63)	72.40 (90.78)	59.86 (73.02)	
4	Azoxystrobin 11% + Tebuconazole 18.3% SC	68.78 (86.86)	70.87 (89.22)	71.82 (90.20)	72.20 (91.57)	74.45 (92.75)	71.62 (90.12)	
Mean		55.00 (64.80)	58.05 (69.41)	61.27 (74.32)	65.62 (80.34)	68.83 (84.80)		
		Fungicide (F)		Concentration (C)		$\mathbf{F} \times \mathbf{C}$		
S.Em.±		0.20		0.23		0.45		
C. D. at 5 %		0.58		0.64		1.29		
	C.V. %	1.26						

^{*}Figures in parenthesis are retransformed values

Table 3: Effect of fungal and bacterial bio-agents on growth inhibition of Fusarium oxysporum in vitro condition

Sr. No.	Bioagents	Growth Inhibition (%)		
1	Trichoderma viride	56.95 (69.80)*		
2	Trichoderma harzianum	54.18 (65.29)		
3	Trichoderma virens	46.50 (52.16)		
4	Pseudomonas fluorescens	43.35 (46.67)		
5	Bacillus subtilis	39.50 (40.00)		
	S.Em.±	0.37		
	C. D. at 5 %	1.16		
	C.V. %	1.33		

^{*}Figures in parenthesis are retransformed values

[MS received: December 12, 2019] [MS accepted: December 22, 2019]